Exploiting Pseudo Future Contexts for Emotion Recognition in Conversations

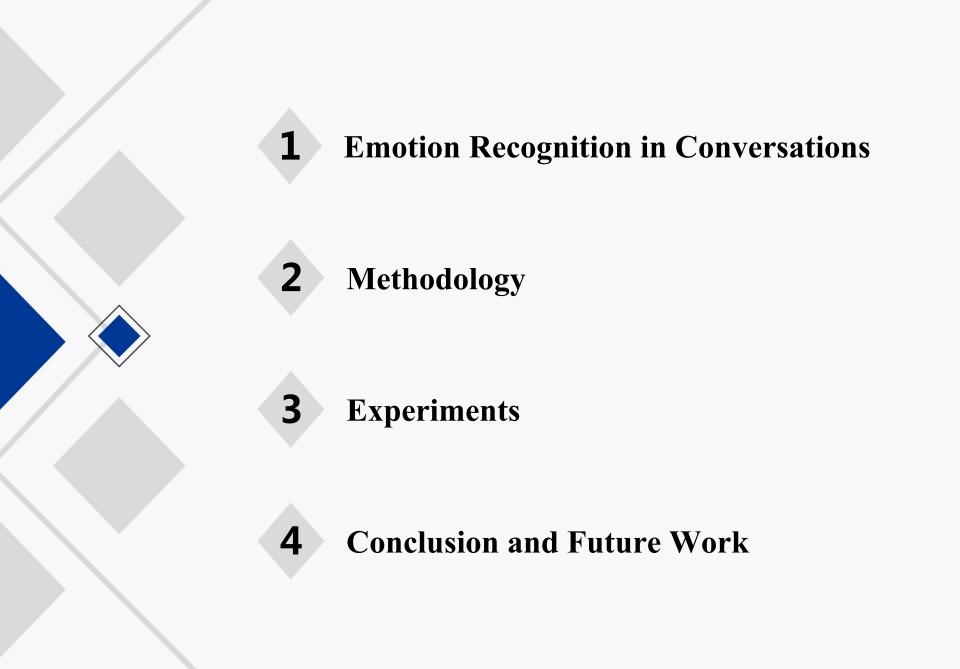
Yinyi Wei¹, Shuaipeng Liu^{2*}, Hailei Yan², Wei Ye³, Tong Mo¹, Guanglu Wan²

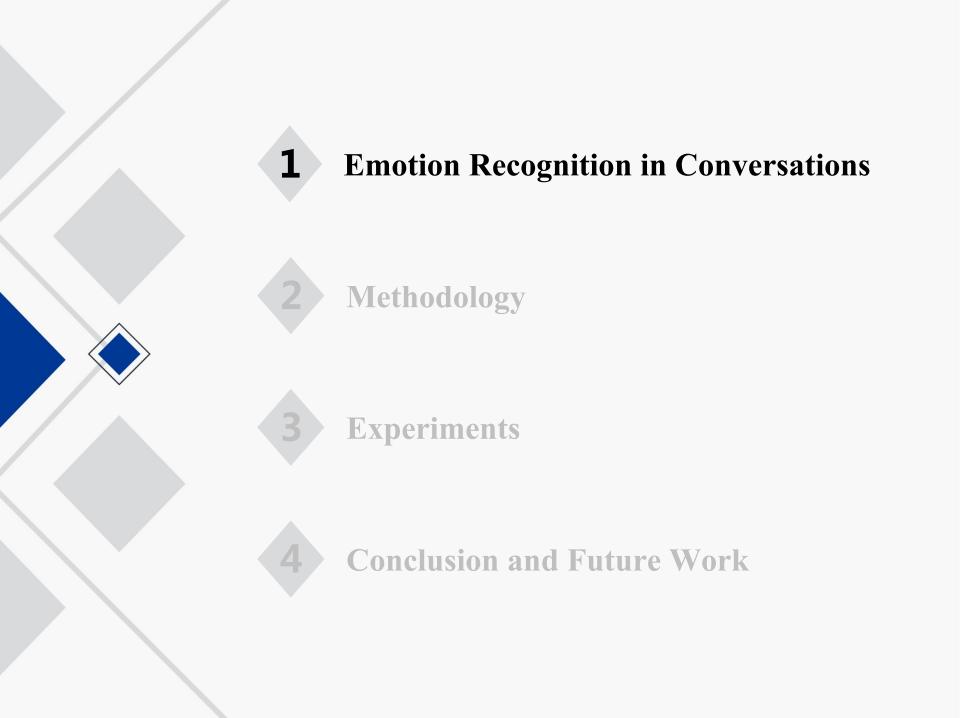
¹Peking University

² Meituan Group, Beijing, China

³National Engineering Research Center for Software Engineering, Peking University

August, 2023

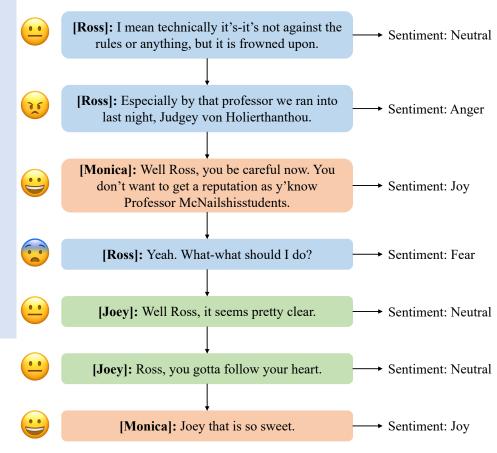




7 Definition

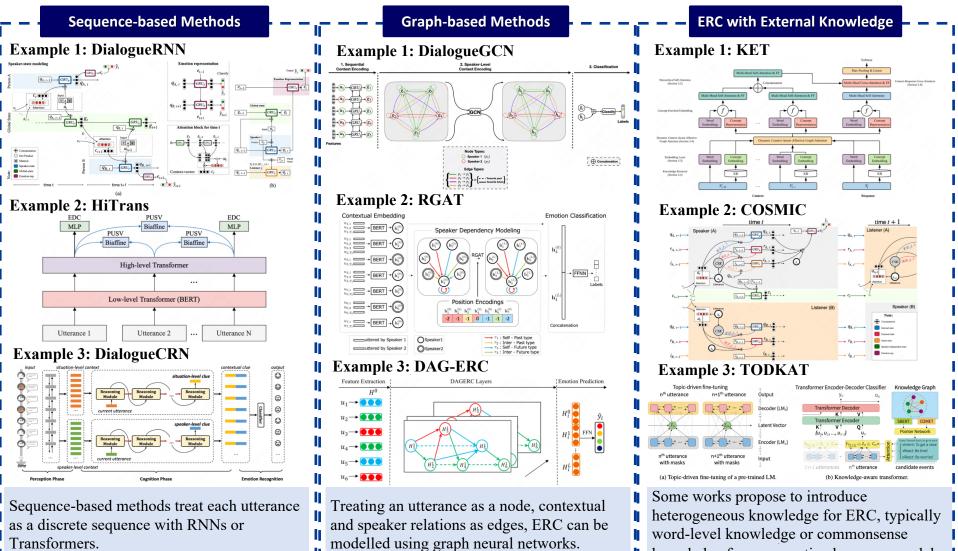
- Definition: Formally, denote U, P and Y as conversation set, speaker set and label set. For a conversation U ∈ U, U = (u₀, ..., u_{n-1}) where u_i is the *i*-th utterance. The speaker of u_i is denoted by function P(·). For example, P(u_i) = p_j, p_j ∈ P means that u_i is uttered by p_j.
 - **Goal:** The goal of ERC is to assign an emotion label $y_i \in Y$ to each u_i , formulated as an utterance-level sequence tagging task in this work.

An example of a conversation: $U = (u_0, ..., u_6)$ $u_0 \rightarrow y_0 \rightarrow \text{Neutral}$ $u_1 \rightarrow y_1 \rightarrow \text{Anger}$ $u_2 \rightarrow y_2 \rightarrow \text{Joy}$ $u_3 \rightarrow y_3 \rightarrow \text{Fear}$ $u_4 \rightarrow y_4 \rightarrow \text{Neutral}$ $u_5 \rightarrow y_5 \rightarrow \text{Neutral}$ $u_6 \rightarrow y_6 \rightarrow \text{Joy}$



An example of a conversation of MELD.

Methods for ERC

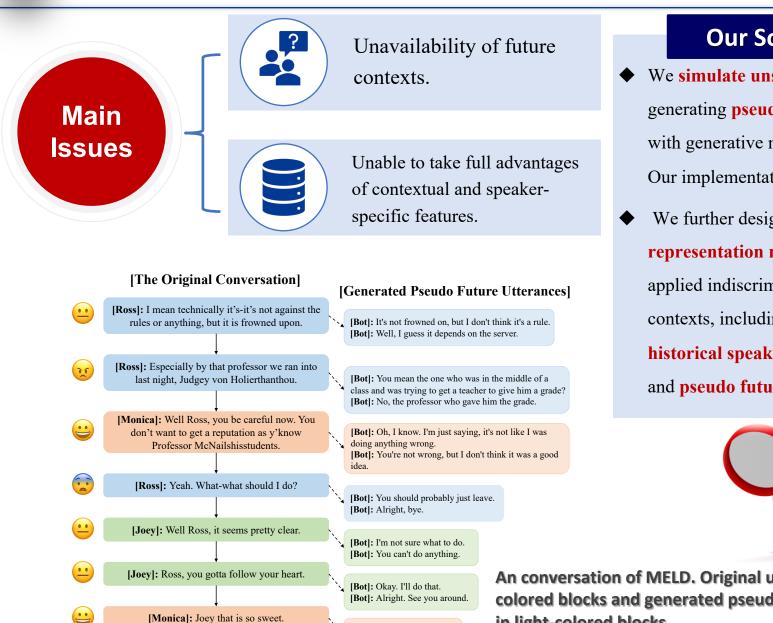


II.

Transformers.

knowledge from generative language models.

Motivations and Solutions



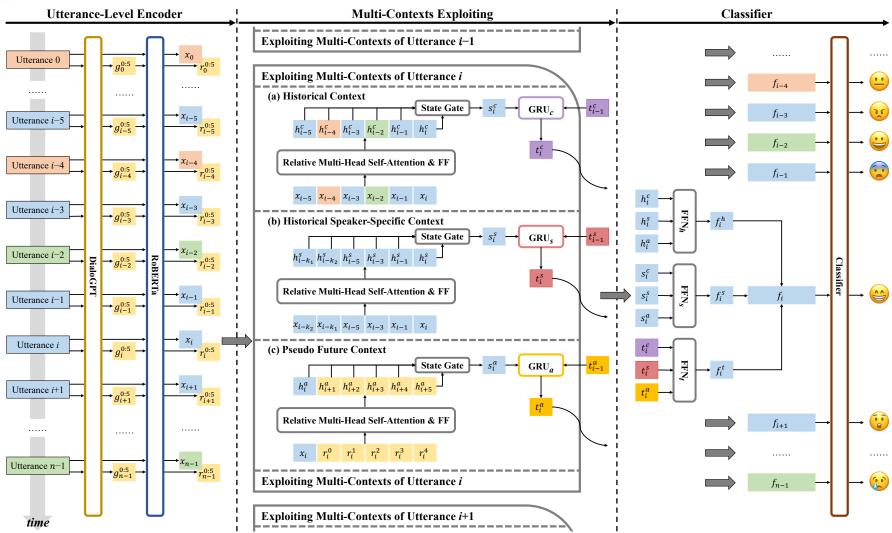
[Bot]: You're a sweetheart! [Bot]: Awwww, thanks.

Our Solutions

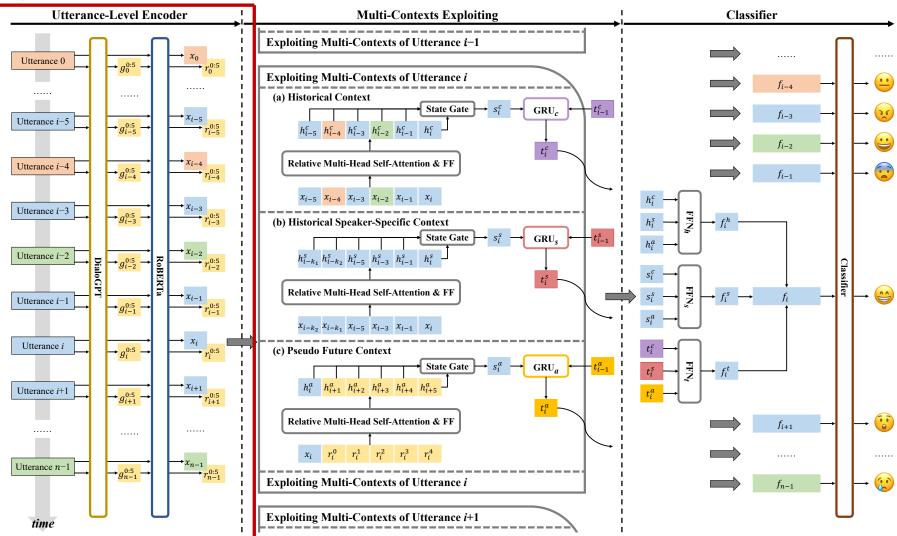
- We simulate unseen future states by generating pseudo future contexts with generative models (DialoGPT in Our implementation).
- We further design a novel **context** representation mechanism that can be applied indiscriminately to multicontexts, including historical contexts, historical speaker-specific contexts. and pseudo future contexts.

An conversation of MELD. Original utterances are in darkcolored blocks and generated pseudo future contexts are in light-colored blocks.

Framework of ERCMC (Emotion <u>Recognition in Conversations with Multi-Contexts</u>)

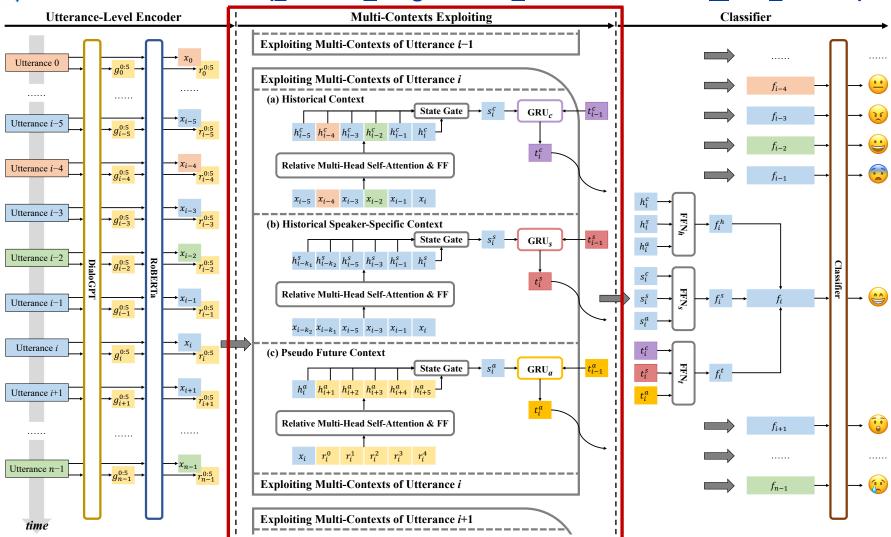


Three primary components: Utterance-level encoder, Multi-contexts exploiting, and Classifier.

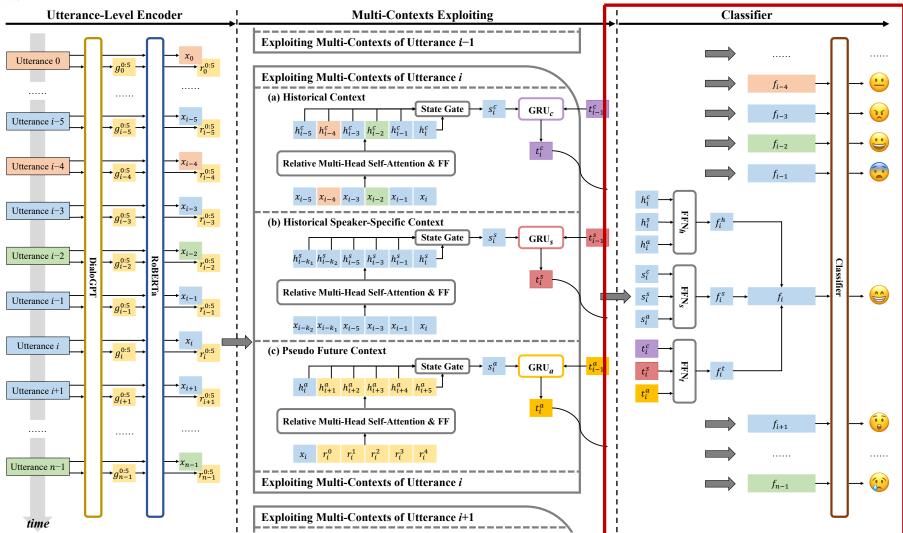


Utterance-Level Encoder: Utilizing RoBERTa to encode utterances and their corresponding generative utterances.

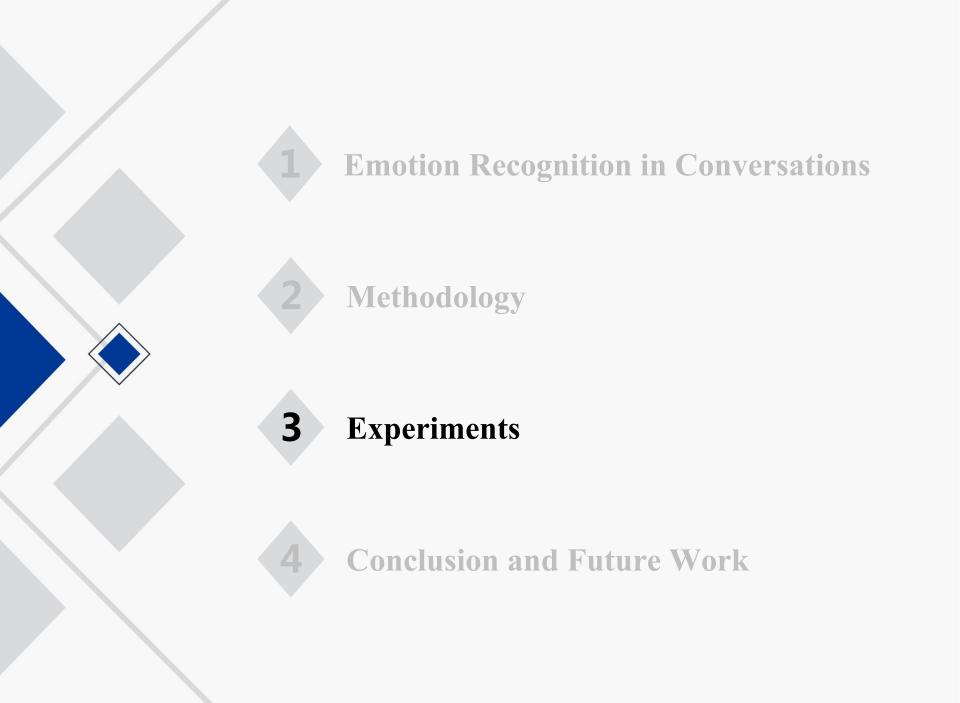
F Framework of ERCMC (<u>E</u>motion <u>R</u>ecognition in <u>C</u>onversations with <u>M</u>ulti-<u>C</u>ontexts)



Multi-Contexts Exploiting: Utilizing multi-head self-attention with relative position embeddings and GRUs to exploit multi-contexts historical contexts, historical speaker-specific contexts, pseudo future contexts.



Classifier: Integrating representations from multi-contexts into one final representation and classifying.



Datasets and Evaluation Metrics

- Dataset: IEMOCAP, DailyDialog, EmoryNLP, MELD
- Evaluation Metrics: Weighted-average F1 for IEMOCAP, EmoryNLP and MELD. Since the neutral class constitutes to 83% of the DailyDialog, microaveraged F1 excluding neutral is chosen.

Dataset	Conversations	Utterances G	Classes
	$\big \operatorname{Train}\big \operatorname{Dev}\big \operatorname{Test}\big $		
IEMOCAP	120 31	5,810 1,623	6
DailyDialo	11,118 1,000 1,000 8	87,170 8,069 7,740	7
EmoryNLF	0 659 89 79	7,551 954 984	7
MELD	1,038 114 280	9,989 1,109 2,610	7

Statistics of datasets.

🚩 Baselines

Sequence-based Methods:

- DialogueRNN
- HiTrans
- CoG-BART

Graph-based Methods:

- DialogueGCN
- RGCN

Methods with External Knowledge:

- KET
- COSMIC
- TODKAT
- SKAIG

Variants of Our Methods:

- ERCMC without future contexts
- ERCMC with multicontexts
- ERCMC using real future contexts

Verall Results

Methods	IEMOCAP	DailyDialog	EmoryNLP	MELD			
	Weighted F1	Micro F1	Weighted F1	Weighted F1			
	Without External Knowledge						
DialogueRNN	62.57	55.95	31.70	57.03			
+ RoBERTa	64.76	57.32	37.44	63.61			
DialogueGCN*	64.18	S- 8	-	58.10			
$+ RoBERTa^*$	64.91	57.52	38.10	63.02			
RGAT*	65.22	54.31	34.42	60.91			
$+RoBERTa^*$	66.36	59.02	37.89	62.80			
HiTrans*	64.50	-	36.75	61.94			
CoG-BART*	66.18	56.29	39.04	64.81			
With External Knowledge							
KET	59.56	53.37	34.39	58.18			
COSMIC	65.28	58.48	38.11	65.21			
SKAIG*	66.96	59.75	38.88	65.18			
TODKAT	61.33	58.47	38.69	65.47			
Variants of Our Model							
C & S	65.47	59.85	38.71	65.21			
ERCMC C & S & PF	66.07	59.92	39.34	65.64			
C & S & RF	* 66.51	61.33	38.90	65.43			

Overall results. In each part, the highest scores are in **boldface**. * indicates using future contexts. C, S, PF, and RF denote historical contexts, historical speaker-specific contexts, pseudo future contexts, and real future contexts.

 Comparison with methods using future contexts.

 Comparison with methods using heterogeneous external knowledge.

 Comparison with C & S setting (i.e., without future contexts) and C & S & RF setting (i.e., using real future contexts).

Collaboration of Multi-Contexts

Part	IEMOCAP	DailyDialog	EmoryNL	P MELD
RAW	56.48	57.46	37.78	64.06
С	63.95	59.14	37.88	64.20
S	64.39	59.48	37.97	64.43
PF	57.38	58.16	37.84	64.20
C & PF	62.29	59.50	37.90	64.36
S & PF	63.35	59.66	37.98	64.76
C & S	65.47	59.85	38.71	65.21
C & S & PF	66.07	59.92	39.34	65.64

Various combinations of Multi-Contexts. RAW denotes no context. C, S, and PF denote historical contexts, historical speaker-specific contexts, and pseudo future contexts.

• Using only one context:

IEMOCAP: S > C > PF **DailyDialog:** S > C > PF

EmoryNLP: S > C > PF **MELD:** S > C = PF

Using any two contexts:

IEMOCAP: C & S > S & PF > C & PF

EmoryNLP: C & S > S & PF > C & PF

DailyDialog: C & S > S & PF > C & PF

MELD: C & S > S & PF > C & PF

Contribution degree of contexts:

S > C > PF > RAW

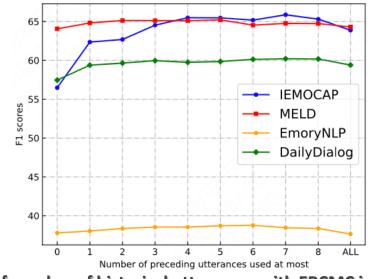
Ablation Study of ERCMC in C & S & PF setting

Dataset	w/o h	w/o s	w/o t	h,s,t
IEMOCAP	62.88	64.35	64.81	66.07
DailyDialog	59.16	59.59	59.50	59.92
EmoryNLP	20.08	38.65	38.74	39.34
MELD	51.51	65.06	65.30	65.64

(a) Results with different compositions of the final representations, h, s, and t denote local-aware embedding, local state, and tracked global state, respectively.

Dataset	Ν	\mathbf{S}	\mathbf{L}	R
IEMOCAP	65.48	64.61	65.28	66.07
DailyDialog	59.89	59.90	59.83	59.92
EmoryNLP	38.64	38.51	38.57	39.34
MELD	64.98	64.83	64.41	65.64

(b) Results with different position embeddings. N, S, L, and R denote using no embeddings, sinusoidal, learnable, and relative position embeddings, respectively.



Effect of number of historical utterances with ERCMC in C&S setting.

Future Context: Pseudo or Real

(a) Simplified test set of IEMOCAP with (b) Simplified test set of DailyDialog with 1468 utterances. 3123 utterances. s

Setting	IEMOCAP		
Setting	Performance	WT_1	WT_2
PF C & S & PF	57.81 66.30	35.85	38.18
RF C & S & RF	$\begin{array}{c} 62.81\\ 66.68\end{array}$	50.10	50.47

Setting	DailyDialog		
0	Performance	WT_1	WT_2
PF C & S & PF	$51.19 \\ 53.80$	44.77	60.43
RF C & S & RF	$53.78 \\ 54.53$	76.79	78.90

(c) Simplified test set of EmoryNLP with (d) Simplified test set of MELD with 1360 utterances.

Setting	Emoi	ryNLP	Setting	
Setting	Performanc	e $WT_1 WT_2$	Setting	
PF C & S & PF	$\begin{array}{c c} 40.94\\ 41.86\end{array}$	29.95 31.36	PF C & S &	
RF C & S & RF	$ \begin{array}{c c} 40.64 \\ 41.73 \end{array} $	27.11 29.22	RF C & S &	

Setting	MEI	LD
<u> </u>	Performance	WT1 WT2
PF	64.07	39.52 43.00
C & S & PF	65.68	35.52 45.00
RF	63.69	35.62 38.38
C & S & RF	64.97	35.02 38.38

Observation:

3.5

Pseudo future contexts can replace real ones to some extent when the dataset is context-dependent, and serve as more extra beneficial knowledge when the dataset is relatively context-independent.

Performance and emotion-consistency on four simplified test sets.

An observation from previous works and our experiments:

Conversations in IEMOCAP and

DailyDialog are more context-dependent,

while conversations in EmoryNLP and

MELD are relatively context-independent.

Definition of emotion-consistency:

The degree of emotional consistency of the subsequent utterances with the first utterance within a local area.

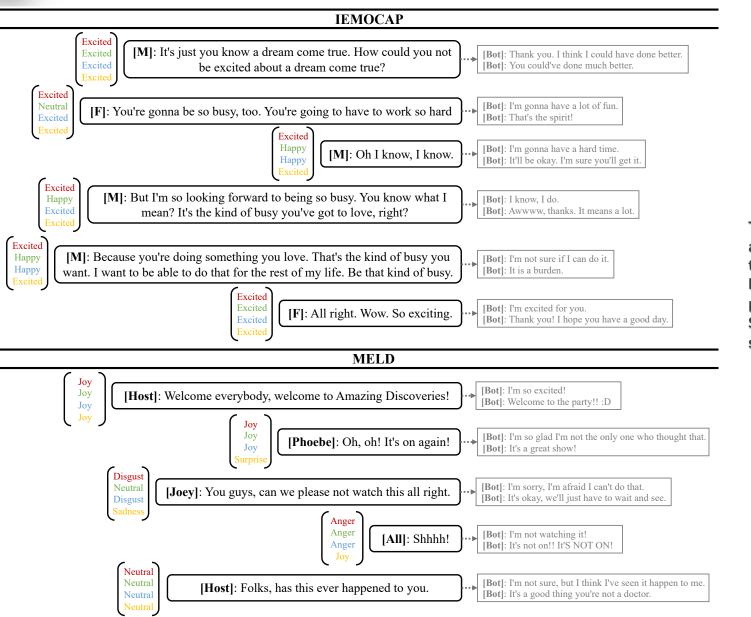
Calculation of emotion-consistency:

$$EC(LC) = 100 \cdot \sum_{i=1}^{\ell} \phi(u_i, u_0) \cdot wt_{i-1}$$

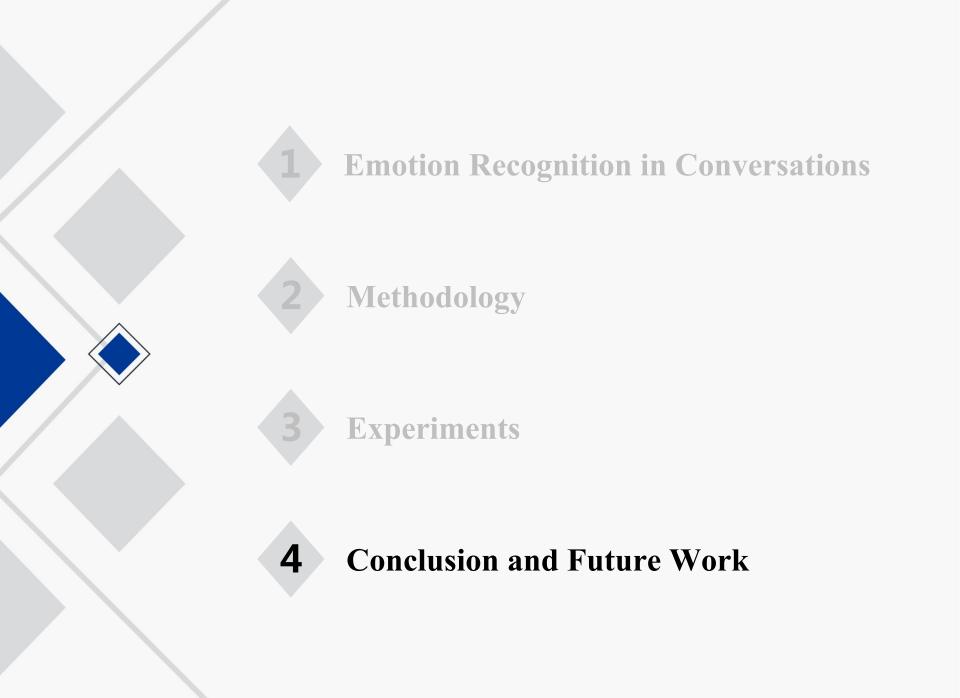
Two kinds of weight:

$$wt_i^1 = \frac{1}{\ell}, wt_i^1 \in WT_1; wt_i^2 = \frac{\exp e^{\ell - i}}{\sum_{j=1}^{\ell} \exp e^{j - 1}}, wt_i^2 \in WT_2$$

3.6 Case Study



Two cases from IEMOCAP and MELD. In the boxes on the left, from top to bottom, are: labels, predictions from C & S, C & S & PF, and C & S & RF settings.



V Conclusion

- We propose a conceptually simple yet effective method of acquiring external homogeneous knowledge by generating pseudo future contexts that are not always available in real-life scenarios.
- Furthermore, a novel framework named ERCMC is proposed to jointly exploit historical contexts, historical speaker-specific contexts, and pseudo future contexts.
- Experimental results on four ERC datasets demonstrate the **superiority and potential** of our method.
- Further empirical investigations reveal that pseudo future contexts can rival real ones to some extent, especially when the dataset is less context-dependent.

Future Work

- Integration with large language models (e.g., ChatGPT) for conversation understanding with our methods.
- Generating pseudo future contexts in a more controllable way, and extending our method to more tasks

